一般社団法人

日本応用地質学会 東北支部

第20回研究発表会講演集

2012年7月20日

一般社団法人日本応用地質学会 東北支部

一般社団法人日本応用地質学会東北支部第20回 研究発表会プログラム

開催日: 平成 24 年 7 月 20 日 会 場:せんだいメディアテーク 7F スタジオシアター 講演集:1,000円 協 替:東北地質調査業協会 開会 開会 10:00 10:00~10:10 支部長挨拶(橋本) 発表(午前の部1)・・・・(座長:石井、副座長:樺元) 10:10~10:20 かぐや月レーダーサウンダー観測による磁気異常領域の地下構造に関する研究 坂東雄一(東北電力㈱) 10:20~10:30 東京湾岸における Ammonia beccarii の生態について 後藤美香(応用地質㈱) 10:30~10:40 東太平洋海膨オフリッジ溶岩の定置過程:深海掘削サイト 1256の巨大溶岩流の岩石学的研究 佐伯和哉 (㈱建設技術研究所) 海野進 (金沢大学自然科学研究科) 10:40~10:50 ボーリングコア詳細観察とボアホールスキャナ孔内観察による高精度なすべり面認定手法 原 勝宏、榊原信夫、三川憲一、福山 博(川崎地質㈱) (休 憩) $10:50 \sim 11:00$ 発表(午前の部2)・・・・(座長:樺元、副座長:石井) 11:00~11:20 定方位・高品質コアリング手法 村田誠一(㈱高知地質調査)、 高野邦夫、大内 学(㈱ダイヤコンサルタント) 11:20~11:40 2011 年 4 月 11 日福島県浜通りの地震(M7.0)で生じた塩ノ平断層の断層露頭観察結果と考察 橋本修一(㈱東北開発コンサルタント) 11:40~12:00 国道 45 号 石巻市成田地区 3.11 震災による斜面崩壊機構と対策工 小林俊樹、大友伸一、天谷香織(㈱復建技術コンサルタント) 12:00 ~ 13:30 特別講演 司会:橋本 13:30 ~ 14:50 「なぜ3.11 大地震による斜面被害が集中したか」 - 仙台市内の宅地と松島湾等の事例 -千葉則行氏(東北工業大学大学院教授(地盤工学)・日本地すべり学会東北支部長) 14:50 ~ 15:00 発表(午後の部)・・・・(座長:大内、副座長:工藤) 15:00~15:20 北上山地の花崗岩地盤は本当に安定か? 遅沢壮一(東北大学) 15:20~15:40 地震で発生した人工地盤の変状(盛土崩壊の事例紹介) 西 俊憲(基礎地盤コンサルタンツ㈱) 15:40~16:00 空洞充填前後におけるAEモニタリングシステムの構築 田野久貴(日本大学工学部研究員) 藍檀オメル(東海大学海洋学部) 渡嘉敷直彦(琉球大学工学部) 総合討論 座長:代表幹事(小林) 16:00~16:30 地震災害研究WG その構想と意義 閉会 16:30 閉会 16:30 副支部長挨拶(高見) 懇親会 17:00~19:00 シェルブール

一般社団法人 日本応用地質学会 東北支部

第20回研究発表会講演集

2012年7月20日

一般社団法人日本応用地質学会 東北支部

目 次

一般社団法人日本応用地質学会東北支部 第 20 回 研究発表会

<u>特別</u>	
	なぜ3.11 大地震による斜面被害が集中したか」
	- 仙台市内の宅地と松島湾等の事例 - ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	千葉則行氏(東北工業大学大学院教授(地盤工学)・日本地すべり学会東北支部長)
<u>発</u>	<u>表</u>
	かぐや月レーダーサウンダー観測による磁気異常領域の地下構造に関する研究・・・・ 10
	坂東雄一(東北電力㈱)
	東京湾岸における Ammonia beccariiの生態について ・・・・・・・・・・・・・ 12
	後藤美香(応用地質㈱)
	東太平洋海膨オフリッジ溶岩の定置過程:
	深海掘削サイト 1256 の巨大溶岩流の岩石学的研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	佐伯札哉(厤建設技術研究所)
	海野 進(金沢大学自然科学研究科) ギーリングコマ詳細知家 トギマナーリフナトナイ 中知家に トス 京特座 わすべい 万辺 完美法
	ホーリングコア詳細観祭とホアホールスキャノ北内観祭による尚有度な9ハリ面総正手法
	正方位・高品質コアリング手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	村田誠一(楙高知地貿調金)
	高野邦夫、大内 学(㈱ダイヤコンサルタント)
	2011 年 4 月 11 日福島県浜通りの地震(M7.0)で生じた塩ノ平断層の断層露頭観察結果と考察
	••••••• 20
	橋本修一(㈱東北開発コンサルタント)
	国道 45 号 石巻市成田地区 3.11 震災による斜面崩壊機構と対策工・・・・・・・・・22
	小林俊樹、大友伸一、天谷香織(㈱復建技術コンサルタント)
	北上山地の花崗岩地盤は本当に安定か? ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 24
	遅沢壮一(東北大学)
	地震で発生した人工地盤の変状(盛土崩壊の事例紹介) ・・・・・・・・ 25
	西 俊憲(基礎地盤コンサルタンツ㈱)
	空洞充填前後におけるAEモニタリングシステムの構築 ・・・・・・・・・・・ 27
	田野久貴(日本大学工学部研究員)
	藍檀オメル(東海大学海洋学部)
	渡嘉敷直彦(琉球大学工学部)

なぜ3.11 大地震による斜面災害が集中したか

- 松島湾の崩壊と仙台市内の宅地被災等の事例 -

東北工業大学 千葉則行

1. はじめに

2011 年東北地方太平洋沖地震は,継続時間 の長い揺れを特徴とする広大な強震域を発生 させた。さらに大規模な地殻変動の結果,マグ ニチュード 7 内外の関連地震も発生し,東日 本大震災では広範囲に斜面災害が発生した。

(社)日本地すべり学会では,平成23年度に 国土交通省国土技術政策総合研究所の委託を 受け,これらの地震による「斜面変動の実態 把握と特徴の類型化」をテーマとして,北は 岩手県から,南は栃木県までの広域的な調査 を実施して報告書を作成した。その中から, 著者ら(千葉・桧垣ほか)が担当した宮城県内 の斜面変動災害,特に松島湾及び仙台市内の 丘陵斜面での被災の特徴について紹介する。

2. 松島湾地域の崩壊を主とした斜面変動 松島湾は仙台市の北東約 20km に位置して いる。この周辺では,松島町から東松島市の 鳴瀬川河口周辺にかけて拡がる丘陵地や湾内 の島嶼部の丘陵地で数多くの崩壊が発生して いる。

2.1 斜面変動発生域の概観と斜面 変動発生状況

崩壊が多発している地域は約 10km四方であり,今回の地震(本震 (3月11日),最大余震(4月7日) のいずれで発生したかは特定でき ず)で発生したとみられる76箇所の 斜面変動を確認した(図1)。同区域 内の発生箇所数は,本調査により宮 城県内で確認された地すべり・崩壊 箇所総数293箇所の26%に当たり, 東北地方太平洋沖地震とその関連地 震では最も発生が集中したところで もある。

松島湾周辺の地形・地質は,侵食 されやすい新第三紀中新世の堆積岩 (凝灰岩に富み,軟質岩)が分布して おり,多数の節理・層理・断層を伴 っている。このため風化剥離,海食 によって急崖を作り易く,島嶼部さ らには沿岸近くの内陸部でも海進時 に形成された海食崖がみられる。また松島湾 周辺の発達する丘陵地は概ね 100m以内の標 高でしかなく開析が進んでいる。

塩釜市内の寒風沢島・野ノ島・宮戸島や松 島町手樽・大塚地区,東松島市野蒜や小野地 区では,急斜面(ほとんどが海食崖に相当)下 に古くからの集落が立地し,また新たな住宅 地となっている箇所もあり,今回の地震によ り崩壊土砂が人家に流入したり,農地を埋没 させたりする被害が多くみられる。現在でも, 応急対策もなされていないところも多く崩壊 地だけでなく,その周辺斜面には崩壊に至ら ないまでも亀裂やはらみ出しが生じている斜 面もみられる。この地域には,津波による甚 大なり,復旧・復興において早急な危険斜面 調査・監視が必要である。

2.2 地質と発生場の特徴

松島湾には下位より,新第三紀中新世前期 の松島層,大塚層が広く分布するが,今回の 地震では特定の部層に崩壊が集中する傾向が

図 1 松島湾周辺の地質と崩壊箇所分布(黒丸) 松島層:桃色系 大塚層:緑色系

認められた。すなわち,松島層は安山岩角礫 及び石英片を含む塊状の軽石凝灰岩からなり, 岩相上,下部から下部軽石凝灰岩部層,中部 軽石凝灰岩部層,凝灰角礫岩部層,シルト岩 部層,上部軽石凝灰岩部層の5部層に細分さ れ,主に室戸島,松島沿岸部に広く分布して いる。この地層では上部軽石凝灰岩部層に岩 盤崩壊箇所が多く確認された(表1)。

また大塚層は、下部からシルト岩部層、砂 岩シルト岩部層、珪藻質シルト岩部層、シル ト岩砂岩部層の4層で構成され、本層はシル ト岩を主にし、凝灰質砂岩・軽石凝灰岩など を狭有している。主に浦戸諸島、松島内陸部 に広く分布しており、このうちシルト岩部層 に集中し、最も多い岩盤崩壊の箇所が認めら れた。

松島層・上部軽石凝灰岩部層は層理の乏し い軽石凝灰岩を主体とし,凝灰質砂岩あるい はシルト岩を伴う。やや緑色を帯びた淡灰色 ~淡黄色を呈し,軽石は粒径 1-2cm 程度であ る(写真 1)。全般に塊状で割れ目の少ない岩 体をなしているところでは加工しやすさから 石材として利用されている(写真 2)。しかし, 今回の地震では 1m~数mの間隔で発達する開 口した節理,亀裂の発達した部分で岩盤崩壊 が発生したところが多かった(写真 3)。また 本部層から成る海食崖を掘り込み小規模な倉

写真1 松島層上部軽石凝灰岩部層の露頭

写真2 採石場跡

地質	也質年代 地層名		3	岩相	崩壊件数	
	中期	志田層群	三ッ谷層	Mnf	稿状シルト岩	
				Mno	凝灰質砂岩及び軽石凝灰岩	
				Muf	凝灰質細粒砂岩(凝灰岩層を挟む)	
				Muq	斜層理のある中一粗粒砂岩	
				Mug	礫岩	
				Mo	斜層理のある中一粗粒砂岩	
				MIf	細粒砂岩(凝灰岩薄層を挟む)	
			根古層	Nk	軽石質砂岩(一部斜層理を示す)	2.
-				Nkt	軽石凝灰岩	
中		松島湾層群	大塚層	Ot4	シルト岩砂岩部層	
₩ 				ОtЗ	珪藻質シルト岩部層	
				Ot2	砂岩・シルト岩部層	4
				Ot1	シルト岩部層	27
	前期			Ots	(砂岩・軽石凝灰岩)	2 :
				Otb	(デイサイト質火山角礫岩)	
			松島層	Mt5	上部輕石凝灰岩部層	14 :
				Mt4	シルト岩部層	1
				Mt3	凝灰角礫岩部層	3.
				Mt2	中部軽石凝灰岩部層	1.
				Mt1	下部輕石凝灰岩部層	

表1 松島湾周辺の地層と崩壊箇所数(現地調査で確認

庫にして利用していたところでも,節理等の 分離面から崩壊する例がみられた(写真4)。 本部層の崩壊は,直径数 m規模の崩落岩塊を 特徴としている(写真5)。

一方,大塚層・シルト岩部層は,一般に塊 状のシルト岩を主体とし,細粒砂岩の薄層を 挟んで互層となるものの,シルト岩勝ちの岩

写真3 松島層上部軽石凝灰岩部層の 岩石崩落

体をなしている。暗灰色を呈して硬いものの, 本部層からなる海食崖の露頭では割れ目が著 しく発達しているところもみられる(写真6)。 本部層での崩壊では,著しく砕片化した崩積 土(岩片)から直径数m規模の崩壊岩塊が生 じており,これらは崩壊発生域での割れ目間 隔に規制されていることが窺われる(写真7)。

写真4 松島層上部軽石凝灰岩部層の 岩石崩落

写真 5 松島層上部軽石凝灰岩部層の 岩石崩落

写真6 大塚層シルト岩部層の露頭

写真 7 大塚層・シルト岩部層の海食崖における割れ目間隔に規制された崩壊 (左:著しく破砕された崩積土 中:径数十 cm の崩壊岩塊 右:巨大崩壊岩)

以上,松島湾周辺で崩壊が多く発生した 二つの部層の各特徴について述べきたが, 大塚層・シルト岩部層の崩壊箇所は微地形 的にみると,いずれも海岸線の海食崖や昔 の内陸部の海進時から出来上がった旧海食 崖に位置していることが共通している。特 に海食崖からなる比高約 10m以上の急崖 で,傾斜遷急線を挟んだ領域を発生域とし たものが多くみられた(写真8,9)。

東北大学理学部地質学古生物学教室 (1978)によれば,1978年宮城県沖地震の 際に松島湾周辺で発生した自然斜面の崩壊 箇所は全部で17箇所確認されている(図 2)。崩壊の分布傾向をみると,松島町中心 部や松島湾付近の島々などの急崖箇所に集 中し,地質的にも今回の地震によるものと 類似した傾向であり,規模の大きな地震の 度に被災が繰り返されていることが確認で きる。

2.3 斜面変動の特徴

崩壊地の幅,高さをメジャー・レーザー 測量器(Laser Technology 社トウルーパル ス)を用いて測定し,また崩壊地の斜面方向 をクリノメーター等で計測した。さらに斜 面変動の運動タイプを分けるために,岩相 と運動タイプの組み合わせ分類を試みた。 岩相は新鮮岩(rock:以下 r)・風化岩 (weathered rock:以下 vr)の2種類,変 動タイプは崩壊(collapse,以下 cl)・落 石(fall,以下 f)・すべり(slide,以下 sl)の3種類とした。これらの組み合わせ6 種類と土石流(debris flow,

以下 df)を含め,全部で 7 種類に分類した。

 1)運動タイプと規模
 図3に運動タイプ別の発
 生箇所数を示す。運動タイ
 プは岩崩落(rock-fall,rf),
 岩盤崩壊(rock-collapse, rcl)のタイプが多いことが 分かる。

崩壊地の規模別頻度とし ては,幅が平均して約22m, 高さの平均は約14mであ るが,中でも高さ・幅とも に11mから15mの規模の ものが圧倒的に多く,高さ 11m~15mのものは全体の

写真8 大塚層シルト岩部層からなる 海食崖の崩壊(遷急線が発達)

写真9 写真8の崩壊発生域 (遷急線を挟む)

図 2 1978 年宮城県沖地震時の崩壊箇所分布 (東北大学理学部地質学古生物学教室・1978 を元に作成)

約4割,幅11~15mのものは全体の約3割 であった。面積では102~103m²が7割を占 めている。これらの崩壊地の規模がさほど 大きくないことは,前述のようにこの地域 の起伏量(100m四方での丘陵地の最高点と 最低点の差)がほとんど100m以下であるこ とに関係している。

今回多かった運動タイプは岩崩落・岩盤 崩壊・風化岩崩壊である。同様な国総研の 資料によると,降雨・地震における土質別 の崩壊発生率は,両者とも表土における崩 壊がほぼ 60%と大部分を占めており,岩・ 風化岩における崩壊は 20%にすぎない。こ の点も,今回の崩壊が従来の地震による崩 壊とは異なる特徴であると考えられる。

本地域はシルトや凝灰岩質の岩相で構成 され,スレーキング等の現象は少ないもの の,層理・節理・断層を伴っており,これ らが要因で岩・風化岩での崩壊が集中した と考えられる。また,崩壊の規模は幅・高 さともに10~15mのものが多かった。なお, シルト岩斜面では崩壊地に隣接した斜面に 亀裂の開きやトップリングで生じた段差・ 亀裂が認められた。これらは,今後の地震 での崩壊の危険が高いと思われ,変動の監 視が必要であると考えられる。

2)発生場の傾斜と斜面形

DEM データを用いて算出した崩壊地の傾 斜は,平均46.7°,40~70°が全体の約7 割と急傾斜であった。ここで崩壊発生場の斜 面特徴をさらに詳細に把握するため,崩壊が 起こったのが斜面の山腹(frank)か,尾根 (crest)かに分け,また山腹における斜面の横 断形が凸型(convex),凹型(concave),直線 斜面(straight,以下st)かに分けて全部で5 種類に分類した。その結果,発生源はほとん どが現在または過去の海食崖からなる比高 10-30m 前後の急斜面で,山腹の直線斜面 (frank-st)が圧倒的に多いことが分かる(図 4)。

浅野ほか(2005)は中越地震での斜面変動発 生場の地形と地震応答解析を用いた地震力の 強さの検討において示している。これは地形 効果と呼ばれる現象で,地震動により凸型地 形が強く震動するため,斜面も強い地震力を 受けせん断破壊が生じ崩壊が発生しやすい。 しかし今回の調査では,最も崩壊が多く見ら れたのは直線型の山腹斜面においてであった。 これは本対象地域内の崩壊地が標高の低い丘

図4 崩壊地の斜面形状別件数

陵地帯で発生していることから,山間地に見 られる凸型斜面での崩壊は少なかったのでは ないかと推定される。崩壊が山腹直線斜面に 多かったのは,起伏が小さく尾根斜面が緩傾 斜であることと急傾斜の海食崖斜面の存在が 原因と考えられる。

3)発生斜面の向き(方位)

図5は傾斜崩壊地の発生斜面向きを整理した結果である。崩壊地は北東・西向き斜面に 多く、南・南東向きに少ない。しかし、この 地域は北北西 南南東方向に向斜・背斜軸を 持つ緩い褶曲構造を持つ層状岩盤が卓越する ため、それが原因で調査域の斜面方位に偏り があるためとも考えられる。そこで、調査地 ばにおいて斜面変動の有無にかかわらず、存 在する全斜面の方位を調べてみた。この解析 は、リモートセンシング学会/評価・標準化研 究会 HP 上に公開されている 10mDEM データを 用いたもので、結果としては、調査地におけ る斜面方位別の頻度に特に卓越する方向 が見られなかった(図6)。このことを踏 まえると,明らかに崩壊発生箇所の斜面 には NE,W方向に多く,地形以外にこれ らの斜面方向に崩壊が集中する何らかの 条件があったことが推察される。

このように崩壊発生が NE・W 方向の斜 面に多かったことの原因としては,主要 な地震動の方向が関係した可能性がある。 どのような地震動が崩壊発生に関わって いるか長時間の揺れの中では難しく,観 測点の地形や地質を考慮しなければなら ないが,大きなあるいは卓越する地震動 方向が崩壊発生斜面の方向を規定してい る可能性がある。

3. 仙台市内の丘陵造成宅地の斜面変動 宮城県内の内陸部では仙台市,白石市 等の市街地において,1978年の宮城県沖 地震時と同様に丘陵斜面上での宅地被害 が発生し,しかもその被害はさらに上回 る規模のものであった。ズレも谷埋め盛 土や腹付け盛土の造成宅地であり,この 盛土斜面の変状が家屋被害を引き起こし た。

3.1 仙台市内の各地に震度

仙台市内の震度は,宮城野区が震度 6 強,青葉区・若林区・泉区で震度 6 弱, そして太白区が震度 5 強であった。神山 (2011)は,仙台圏内の 20 箇所に地震計 を配備した東北工業大学アレー強震シス テムによって今回の強震記録を得て(20 箇所のうち,3 箇所欠測),詳細なエリア での計測震度の違いを明らかにしている。

図7及び表2によれば,標高が低い東 部ほど震度が大きくなっており,観測点 ごとの地盤条件,地形条件を反映した様 子がわかる。すなわち,仙台市東部の沖 積低地上では震度6強以上が観測されて おり,このうち七郷中学校では計測震 6.5,震度7となっている。一方,標高が 高くなる段丘,丘陵地帯では幾分震度は 小さくなり,特に軟岩~中硬岩で構成さ れる丘陵地上の尚絅学院大学では計測震 度5.1,震度5強を示している。

本震の揺れは約6分間続き,なかでも 震度4以上の激しい揺れが150秒以上も 続いたことが特徴的な地震であった。観 測された地震波形の速度応答スペクトル

略号	観測点	⊐ − ド	北緯(度)	東経(度)	最大加速度(ガル)	計測震度	震度階
S1(AKA001)	尚絅学院大学	SHOK	38.192	140.832	215	5.1	5強
S2(AKA002)	柳生中学校	YAGI	38.186	140.876	764	5.9	6弱
S3(AKA003)	東四郎丸小学校	HSHR	38.191	140.927	521	5.9	6弱
S4(AKA004)	荒浜小学校	ARAH	38.22	140.983	542	5.9	6弱
S5(AKA005)	仙台東高校	SENH	38.217	140.936	欠測		
S6(AKA006)	東長町小学校	HNAG	38.217	140.894	720	6.0	6強
S7(AKA007)	太白小学校	TAIH	38.228	140.821	709	5.6	6弱
S8(AKA007)	栗生小学校	KURI	38.264	140.789	564	5.5	6弱
S9(AKA008)	東北工大香澄町	TITK	38.243	140.854	471	5.8	6弱
S10(AKA008)	東北エ大ニツ沢	TITF	38.231	140.874	429	5.6	6弱
S11(AKA009)	七郷中学校	CCHG	38.234	140.949	1074	6.5	7
\$12(AKA009)	仙台工業高校	SIKO	38.256	140.921	542	5.8	6弱
S13(AKA010)	連坊小学校	RENB	38.249	140.891	521	5.7	6弱
S14(AKA010)	桜ヶ丘小学校	SAKR	38.3	140.854	681	5.8	6弱
\$15(AKA011)	(旧)宮城県立盲学校	MOGA	38.275	140.882	700	5.6	6弱
S16(AKA011)	南光台東小学校	NANK	38.296	140.916	699	5.8	6弱
\$17(AKA012)	田子小学校	TAKA	38.271	140.961	欠測		
S18(AKA012)	多賀城第二中学校	TGNI	38.298	140.983		欠測	
S19(AKA013)	岩切中学校	IWAK	38.299	140.949	859	6.4	6強
S20(AKA013)	七北田中学校	NAKI	38.321	140.896	1853	6.1	6強

表 2 Small Titan による地震記録一覧(神山,2011)

解析結果によると、大きな揺れは短周期地震動にあたる周期0.1 - 1秒の範囲で現れ、木造家屋等の最も揺れやすい周期1 - 2秒では比較的小さかったことが指摘されており、内陸部での地震動の直接的な影響による木造家屋の倒壊などの被害が目立たなかったことと符合している。

3.2 宅地盛土斜面の変状被害

仙台市内の家屋被害としては,全壊23,166 戸,半壊59,394 戸,一部破損91,741 戸であ り,このうち津波被災による被害が全壊1万 棟以上,半壊・一部損壊が多数となっている。 一方,宅地盛土斜面の変状による被害は,主 に昭和30年代後半~40年代にかけて造成さ れた丘陵斜面上の宅地盛土に被害が集中し, 仙台市が実施した調査結果(2011年11月現 在)で4,031宅地が被災を受けたことが明ら かとなった。

仙台市内の宅地被害の多くは,市中心部から5~7kmに位置する団地が主であり,特に太 白区緑ヶ丘,泉区南光台等に集中している(図 8)。1978年の宮城県沖地震時にも丘陵斜面 上の宅地盛土が被害を受けたが(図9),今回 はさらに被害が甚大でかつ被災範囲も市街地 の西方に大きく拡大しており,特に1978年宮 城県沖地震では無被害であった青葉区折立も 甚大な被害を被った。

宅地の造成パターンとしては,急峻な谷を 完全に埋め立てた上で谷の下流方向にひな段 を造成したタイプ(谷埋め盛土),丘陵斜面を

図8 今回の仙台市内の宅地被害の分布

図 9 1978 年宮城県沖地震による仙台市内 の宅地被害の分布(浅田, 2005))

切盛りして狭い幅のひな段を造 成したタイプ(腹付け盛土),さ らに幾つもの尾根や谷を跨って 広く平坦に造成したタイプ(腹 付け盛土,谷埋め盛土の存在) が挙げられる(浅田,2005)。図1 0は,1978年宮城県沖地震そし て今回の地震で繰り返し宅地盛 土斜面の変状被害を被った太白 区緑ヶ丘周辺における,造成前 及び造成後の地形(盛土分布) を示したものである。1978年の 地震では緑ヶ丘1丁目、3丁目, 4 丁目が宅地盛土斜面の変状に よる被害を被ったが,今回の地 震では同2丁目,青山2丁目に も被害が拡大した。ここで特筆 すべきは,1978年に被害を受け て抑止杭と地下水排除工を施し た緑ヶ丘1丁目では無被害,さ らに同3丁目も盛土全体の滑動 崩落を防ぐことが出来たことで ある。

 3.3 地震被害の主な要因 地震被害の主な要因は谷埋め型 盛土,腹付け型盛土,切り盛り 境界, 擁壁の傾動・破壊, 盛土 の締固め不足,液状化(湿地跡) によるものである。このうち被 害の数が多かった谷埋め型盛土 及び腹付け型盛土の事例を紹介 する。青葉区折立では 1978 年の 地震では被害が無かったが,今 回の地震で谷埋め盛土全体が滑 動崩落のような様相の被害が発 生した。また,図11は八木山 丘陵南東部に位置する団地内に おける谷埋め盛土及び腹付け盛 土の変状の様子を示したもので

ある。ここでは,幅120m,長さ350mの範囲 にわたって引張り亀裂あるいは隆起・沈下が 著しく見られる。この地区で三本の小さな枝 沢を盛って造成されたところであり,これら の変状は旧谷地形に沿って生じている。盛土 材はシルト質砂からなり,N値は0~3と脆弱 で,盛土層厚は約3m程度で薄い。もともと小 さな枝沢が発達したとこでもあり,地下水が 集水しやすいために地下水位は造成後も地表 面付近と高いものとなっている。なお,この

a)造成前の地形(昭和 33 年当時)

b)造成後の地形(平成 20 年)

図10 被災を受けた太白区緑ヶ丘周辺の地形改変 (東北工大・都市マネジメント学科,2011を基に作成)

> 地区は 1978 年宮城県沖地震にも被災を被っ たが,今回の地震でも前回の同様またはそれ 以上の被害を受け,被災が再現された形となった。

3.4 宅地盛土斜面の被害の特徴

)1978 年宮城県沖地震の際より,今回の地 震の被害範囲が拡大した。あらたに被災した 理由には震度が大きく,継続時間が長かった ことが考えられる。

図11 八木山丘陵南東端付近の宅地盛土斜面の変状 (東北工業大学都市マネジメント学科,2011を基に作成)

)1978年宮城県沖地震と今回の地震の両 方で被災にあった地区(団地)は,昭和 30 年代から 40 年代に丘陵斜面上に造成された ところであり,今回の地震による被災率(被 災宅地数/全宅地数)も大きい傾向を示す(風間,2012)。

) 変状のあった盛土地盤は, N値 0~5 で脆弱であり,かつ地下水位も高く,また擁 壁の構造や支持力・安定性に問題を抱えてい るところが多い。

)宅地の地表変状は,引っ張り亀裂,圧 縮亀裂,沈下(揺すり込み沈下),隆起などの 現象が複雑に出現している。また,被災後の 地中ひずみ計の観測では明瞭なすべり面が確 認されていないことから(仙台市,2011),単 ーなすべりと捉えられるようなものではなく, 地山と盛土の境界をすべり面とする動きに加 え,浅い部分の小ブロックのすべりあるいは 変状が複合した形の発生メカニズムが推定さ れる。

) で述べた小ブロックが隣り合う場合 でも,互いに移動方向が異なる例もかなり見 られた。同様のことは,茨城県で東北地方地 併用沖地震により発生した岩盤すべりでも指 摘がある(森島ほか,2011)。同時に隣接ブロ ックが異なる方向には動かないことから,長 い揺れ中で起こった現象と言える。

) 宅地盛土斜面の変動は強い余震の回数 減少とともに収まり,8 月以降は連続雨量 300mm の豪雨でも動かなかった。宅地盛土斜 面は,降雨では変動を起こさない状況と考え られる。

4. あとがき

今回の地震では、長い揺れによる斜面変動 発生という課題が浮かび上がってきた。最大 加速による評価、累積力積のような付加した エネルギー量も加えて地震インパクトを評価 すことで、地震による斜面変動の危険性評価 をする視点も必要になったといえる。

<主な引用・参考文献>

- 1)(社)日本地すべり学会(2012):地震によ る斜面変動の実態と特徴の類型化.
- 2)浅田秋江(2005):将来の宮城県沖地震に おける丘陵地宅地造成地の被害予測と対 策,東北工業大学研究報告,p.286.
- 3)神山眞(2011):2011 年東北地方太平洋沖 地震における東北工業大学アレー強震観 測システム small - titan による強震記 録について(速報 Ver.1),地盤工学会東 北支部,pp.35 35.
- 4)松本秀明(1996):石巻の歴史 第1巻 通 史編(上)pp.7-13,石巻市史編さん委員 会編,石巻市発行.
- 5) 仙台市(2011): 仙台市被災宅地状況図. http://www.city.sendai.jp/jutaku/taku chihisai_010.html
- 6)東北大学地質古生物学教室(1979):1978
 年宮城県沖地震に伴う地盤現象と災害について,地質学古生物学教室研究邦文報告,第80号,pp.1-98.

かぐや月レーダーサウンダー観測による 磁気異常領域の地下構造に関する研究

東北電力株式会社土木建築部 坂東雄一

【研究背景・目的】

月には現在,全球的な磁場は無いものの, 点在して磁場が存在していることが分かって おり,磁気異常と呼ばれている。この原因に ついては,対蹠点衝突起源説,コアダイナモ 説,隕石衝突時の過渡磁場説,彗星の衝突説 等が提唱されているが,一致した見解は得ら れていない。

磁気異常の成因を考える上で磁化している 層厚を検討することが重要であるとされてい る。これは各々の成因によって磁化している 厚さが異なるためである。

従来の研究では,アポロが回収した残留磁 気が最も強いサンプルを用いて,磁化してい る厚さ,成因を推定していた。しかし,アポ ロサンプルは磁気異常領域からは未回収で, また,限られた数のサンプルしか回収されて いないことから,より強く磁化している岩石 の存在が示唆されていた。よって,アポロサ ンプルを介することなく,磁化している厚さ を直接推定する必要があった。

一方,月の進化の歴史を解明するために 2007年に月探査衛星「かぐや」が打ち上げら れ,これに搭載された月レーダーサウンダー (LRS)によって,従来見ることができなかった 月の地下の構造を詳細に見ることができるよ うになった。

以上を踏まえ本研究は、磁気異常を形成している地下層の厚さをLRSによって直接見積 もることにより、磁気異常の成因について明らかにすることを目的とした。本発表では、 全球的な磁場(コアダイナモ)によって磁化したとされている、危難の海についての解析 結果を報告する。

危難の海では最近,磁気異常の半径,モー メント,磁化方向等がシミュレーションによ って求められた。アポロサンプルの最大磁気 強度を考慮することにより,危難の海の磁気 異常【図1】は全球的な磁場(コアダイナモ) によって磁化していると報告された。しかし ながら,アポロのサンプルは弱い外部磁場の 影響を受けている,月がダイナモを駆動する には核の大きさが小さすぎる等の理由から, ダイナモ説に関しても一致した見解を得られ ていない。本研究では危難の海の地下構造を LRS によって詳細に解析し,磁気異常の成因 について考察を行った。

【データ】

月レーダーサウンダー(LRS)のデータを用 いた。地下画像は合成開口処理(SAR)が施され ている。SAR 解析では表層物質の誘電率を 6.25 と仮定した。A-scope 図【図2】に用い たエコー強度直線は JAXA-SELENE データアー カイブのデータを用いた。LRS は HF 帯(5MHz) の周波数で観測をしており,地下数キロメー トルの深度まで観測が可能であるとされてい る。LRS の空間分解能は 75m である。

【結果】

LRS の観測によって危難の海の地下には少 なくとも3つの玄武岩層が存在していること が分かった【図3】。図2から,1層目,2層 目,3層目の玄武岩層の層厚をそれぞれ, 120,260,500mと見積もった。

【図2】: 危難の海のエコー強度-深度直線. 各玄武岩層の層厚を求めた.

【図3】: 危難の海の層状構造. 3つの反射層が確認できる.

【考察・結論】

クレーター年代から求められる表層地層の 形成年代と,玄武岩層の間に挟まれるレゴリ ス層の堆積継続期間から第3層目の玄武岩層 形成年代の推定を行った。3つの玄武岩層が 磁化していると仮定し,ダイナモ駆動モデル として提唱されている,力学的撹拌モデル, 熱化学対流モデルの2つの説を適用すること により,モーメント量を計算した。この結果, 危難の海の磁気異常を説明するためには,玄 式岩中に金属鉄1%,外部磁場100µT程度必 要であることがわかった。これは月全球的に 駆動される磁場(コアダイナモ磁場)によっ て危難の海の磁気異常が形成されたことを示 唆している。 東京湾岸における Ammonia beccarii の生態について

1.はじめに

海水域や汽水域には、有孔虫という砂粒程 度の大きさの生物が生息する。有孔虫は属や 種が同じでも、水温、塩濃度等の違いによっ て亜種が異なるものが存在する。亜種を多く 持つ底生有孔虫の Ammon ia beccar i i という種 を対象に、亜種の分布、更に各亜種の詳しい 生息条件や形態の変化を、東京湾岸で採取し た試料を用いて明らかにした。

2. 有孔虫について

有孔虫とは石灰質の殻と網状仮足を持つ原 生生物の一群で、大きさは通常1mm以下であ る(図.1)。殻は硬く丈夫なため地層中にも残 りやすく、示相化石として古気候、古環境の 復元に利用される。

図.1 有孔虫の各名称

ホ元(2008)

3. Ammonia beccarii について

*Ammonia beccarii*とは底生有孔虫の一種で ある。すべての旋回が見られる背側面、最終 旋回のみが見られる腹側面を持つ(写真.1)。

Ammonia beccarii(以下 *A.b.*とする)は微 妙な特徴の差異により、「*A.b.*forma1」、 「*A.b.*forma2」、「*A.b.*forma tepida」の3種 類の亜種に区分される。以下に各亜種の特徴 を示す。

a) A.b. forma1

背側面が平坦で、縫合線がやや直線状である。成熟個体の旋回数は3旋回弱で、最終旋回は7~9室よりなる。

応用地質株式会社 東北支社 後藤美香

b) A.b. forma2

背側面が凸状で、縫合線が曲線を描く。成 熟個体の旋回数は3~4 旋回で、最終旋回は8 ~11 室よりなる。*A.b.* forma1 に比べて、背側 面が非常に凸になっている。

c) A.b. forma tepida

背側面が凸状で、縫合線が直線的である。 成熟個体の旋回数は3旋回弱で、最終旋回は 5~6室よりなる。房室が花びら状で、1つ1 つが独立している。

- 4.研究方法
- 4-1.研究の流れ
- a)水深による生息条件の調査

各亜種の水深に対する適性を検討するため、 水深 0.5~5m の各地点で試料を採取し、分析 した(図.2)。

図.2 試料採取地点位置図 google earth b)水温、塩濃度等による生息条件の調査

調査地点で多数確認された A.b. forma1 の 水温、塩濃度等に対する適性を検討するため、 図.3 に示す各亜種条件の地点で試料を採取 し、分析した。

図.3 試料採取地点1	立直凶 google map
沖 360m 地点(砂質)	塩水沼(砂泥質)
沖 180m 地点(砂質)	クリーク(泥質)
海岸(砂質)	小櫃川支流(砂泥質)
支流河口(砂泥質)	小櫃川本流(砂泥質)

4-2.調查方法

調査地点の水温、塩濃度等を調べ、砂のサ ンプルを採取する。サンプル中の有孔虫を拾 い出し、種類や大きさ等を判別する。以上の 調査を1年間行い、季節、温度、塩濃度等に より、A.b.の生態や形態がどのように変化す るのか分析した。

5.結果

- 5-1. 各亜種の水深に対する適性
- A.b. forma1 は (水深約 0.5m)の地点で 出現し、22 個体が見られた。
- A.b. forma2 は (水深約 0.5m)の地点から出現し、4 個体が見られた。それ以深の地点では 3~10 個体が見られた。
- A.b. forma tepidaは (水深約 2m)の地 点から出現し始め、8 個体が見られた。 (水深約 5m)の地点では 28 個体と急激に 個体数が増えた。

5-2.*A.b.*forma1の水温、塩濃度等に対する 適性

各亜種の水深に対する適性の調査結果によ り、水温、塩濃度条件が多様な沿岸部には

A.b. forma1 が多く生息する事が分かった。そ こで、小櫃川の干潟で *A.b.* forma1 の詳しい生 息条件の調査を行った。

a) A.b. forma1 の地点別の個体数の変化

- 砂質土が分布する ~ の前浜の地点で は殆ど発見されなかった。
- 砂泥質~泥質土が分布する ~ の後浜の地点で多く発見された。
- の塩水沼で最も多く発見された。
- b) A.b. forma1 の月別の個体数の変化
- ・ 1月から4月にかけて個体数は13~163個
 体と、緩やかに増加した。
- ・ 4月から6月にかけて163~549個体と、 急激に増加した。
- ・ 6月から9月にかけて549~64個体と、急激に減少した。
- 9月から11月にかけて84~27個体と緩や かに減少した。
- c) A. b. forma1 の水温による個体数の変化
- ・ 約 14~26 で個体数は 163~549 個体と、 緩やかに増加した。
- 約 28~32 までは個体数は 549~64 個体 と急激に減少した。
- 約 32 以上、10 以下では殆ど出現しなくなった。

d) A.b. forma1 の塩濃度による個体数の変化

- 約 21~24‰の間で個体数は 739 個体と、
 急激に増えた。
- 約8~21、24~30‰の範囲では個体数が 15~67個体と、ほぼ横ばい状態になった。
- ・ 約 30‰以上、9‰以下は殆ど出現しなくなった。

e) A.b. forma1 の最終旋回の房室数

- ・ 殆どの地点で、最終旋回の房室数が 7 個 のものが多く出現した。
- ・ 24.5~29‰付近を境に、塩濃度が大きい
 地点では房室数が8個のものより6個の
 ものの方が多かった。
- ・ 24.5~29‰付近を境に、塩濃度が小さい
 地点では房室数が6個のものより8個の
 ものの方が多かった。

6.まとめ

a)各亜種の水深による生息条件について

A.b. forma1 は水深 0.5m 以浅に分布したことから汽水域である沿岸部に、*A.b.* forma2 は水深 0.5 ~ 5m の地点に分布したことから、汽水域である沿岸部、海水域である湾央部に、 *A.b.* forma tepida は水深 2m から出現し始め、 5m で増加したことから、海水域である湾央部 に多く生息すると考えられる。

b) A.b. forma1 の生息条件について

塩水沼やクリークで多く発見されたことか ら、砂質土よりも砂泥質・泥質土の場所に多 く生息し、また、波の少ない場所に生息する と考える事も出来る。

最も多く出現するのは、6月付近、減少す るのは1月付近である。ことから *A.b.* forma1 が最も多く出現するのは夏季、減少するのは 冬季であると考えられる。

最も出現する塩濃度条件は、約 21~24‰で あり、汽水域が最適の生息域あると考えられ る。

24.5~29‰を境に、それ以上は最終旋回の 房室数が少なくなり、それ以下は房室数が多 くなる傾向があることから、海水に近いほど 房室数が少なくなり、淡水に近いほど房室数 が多くなると考えられる。

7.おわりに

今回の研究では、沿岸部に生息する *A.b.* forma1 の調査のみとなったため、今後 *A.b.* forma2、*A.b.* forma tepida の研究が行わ れることを期待したい。

東太平洋海膨オフリッジ溶岩の定置過程: 深海掘削サイト 1256 の巨大溶岩流の岩石学的研究

(㈱建設技術研究所 佐伯和哉 金沢大学自然科学研究科 海野 進

はじめに

海洋地殻の厚さは拡大軸直下に比べてオフ リッジでおよそ2倍になることが知られてお り (Hooft et al., 1997), 高速拡大海嶺の近 傍には多数のオフリッジ火山が分布する.従 って,オフリッジ火山は,高速拡大海嶺にお ける海洋地殻第二層形成の主体を担っている 可能性がある.しかもオフリッジ火山の全岩 化学組成は,拡大軸上の溶岩よりも液相濃集 元素に富んでいたり、あるいは枯渇していた りしており,通常の中央海嶺玄武岩 NMORB か らエンリッチした EMORB まで変化に富んでい る.しかしながら,オフリッジ火山の産状や 形成過程についてはほとんど知られていない. 深海掘削サイト 1256 では、オフリッジで定置 したと考えられる厚さ 75 - 100m の巨大溶岩 流を掘削しており,巨大溶岩の内部構造や定 置過程を明らかかにする上で,貴重な研究対 象である.

地質概説

掘削サイト 1256 は 1500 万年前に,22cm/yr で超高速拡大していた東太平洋海膨で形成さ れたココスプレート上に位置する.1256C 孔は 堆積物,溶岩,シート状岩脈群を貫通,ガブ ロにまで到達した唯一の深海掘削孔である (Willson et al., 2003; 2006).第 206 次掘 削航海では南北に 30m離れた 1256 C 孔とD 孔 において基盤岩最上部を構成する巨大溶岩流 を貫通している.巨大溶岩の厚さは 1256C 孔 で 35m,1256D 孔では 100.5m あり,海嶺軸か ら 3-5 km 離れた地溝に埋積し生じたものだと 考えられる (Teagle et al., 2004).サイト 1256 から南東に基盤の表層 100mまでのP 波速 度が 4.8 km/s 以上の超高速度領域が 20 k m ×12 k mに渡って広がっており,溶岩流に相 当すると考えられる.溶岩の平均厚さを 50 m とすると,10 km³以上の体積を有する巨大溶 岩原となる (Willson et al., 2003).また,全 岩化学組成のカリウムは,海底下深度 290 m (mbsf)から 300 mbsf で高い値を示すことから EMORB がこの層準に存在すると考えられる (Wilson et al., 2003).

岩石記載

溶岩流は斑晶としてかんらん石,単斜輝石, 斜長石,石基は単斜輝石,斜長石,磁鉄鉱か ら成る.岩体上部と下部はバリオールを含み, 中心部には二次的に晶出した石英と少量の黒 雲母を含む.組織には,斜長石や単斜輝石が 放射線状や、ファン状に配列するバリオール 組織,単斜輝石が短冊状の斜長石を部分的に 包有したり,斜長石が単斜輝石を部分的に包 有するサブオフィティック組織を示す.また 粒間を埋める石英と斜長石が同時成長したイ ンターグロース組織が見られる.さらに岩体 中心部では,ピジオン輝石が観察でき,ピジ オン輝石は普通輝石に包有される.

考察

かんらん石斑晶の粒径分布と数密度分布に おいて 292 mbsf ~ 311 mbsf までの EMORB が 貫入する前を復元し、結晶沈降モデルと比較 したところ、結晶沈降に期待される結晶粒径 分布と類似している事がわかった. EMORB 層 の直上の 290~291 mbsf は斜長石粒径,単斜 輝石粒径が最大となり,普通輝石の Mg#が低 い.またこの層準は,最終分化物である石英 と斜長石からなるインターグロース組織や石 英がほかの層準よりも多く含まれる.このこ とから結晶分化が進んで生じた残液中にシリ カと水が濃集したと考えられる.水に富む残 液は低粘性であるために,結晶の成長速度が 速く、斜長石粒径、単斜輝石粒径が粗粒化し た可能性がある. これらより,NMORBからな る本体とは異なる EMORB 組成の溶岩が岩体形 成末期に未固結の岩体中心部に貫入したと考 えられる.

普通輝石,ピジオン輝石の Al₂O₃,CaO,MgO の分布像に基づいて,NMORB 層では, Augite-N1,Augite-N2,Augite-N3の3種類 の普通輝石と Pigeonite-N1, Pigeonite-N2 の2種類のピジオン輝石を同定した.また EMORB 層では,Augite-E1,Augite-E2, Augite-E3 の 3 種類の普通輝石と Pigeonite-E1,Pigeonite-E2の2種類のピジ オン輝石を同定した.PigeoniteN-1 × AugiteN-3,PigeoniteE-1×AugiteE-1のペア はFe-Mg分配,微量元素分配より平衡であり, 同じマグマから晶出したと考えられる.晶出 はAugiteN-3×PigeoniteN-1 PigeoniteN-2 AugiteN-1 AugiteN-2(リム) EMORB 貫入 AugiteE-1 × PigeoniteE-1 PigeoniteE-2 AugiteE-2 AugiteE-3(リム)の順に晶出し たと考えられえる.

Fig. 1 普通輝石, ピジオン輝石の産状 (AI マップ図) A-D は NMOEB ,E,F は EMORB の産状.

ボーリングコア詳細観察とボアホールスキャナ孔内観察による 高精度なすべり面認定手法

川崎地質株式会社 原勝宏、榊原信夫、三川憲一、福山博

1.はじめに

地すべり調査においてすべり面は,地表踏 査,地形解析,ボーリング調査に加え,動態 観測結果を総合的に解釈して決定する必要が ある。変動が停止している地すべりでは,動 態観測によるすべり面認定が困難であるた め、ボーリングコアの観察が特に重要となる。

地すべり土塊のコア観察において,すべり 面は一般的に低角な傾斜を持つ粘性土層であ ることが多いが,これらは地すべりに起因す る構造なのか、破砕・変質に起因する構造な のか判別が困難なケースが認められる。

既往研究では,藤原(1976),中村・白石 (1977),渡・小橋(1987),国土技術センタ ー(2010)などにより,地すべり土塊を示す コア性状として,風化の程度や,破砕状況を 観察・区分する方法が提案されてきた。

最近では,脇坂ほか(2012)により,地す べり土塊中の破砕性状に着目した記載方法も 提案され,コアによる地すべり土塊の記載方 法が確立しつつある(図-1)。

既往研究において, すべり面で複合面構造 が示された事例としては、Skempton et al.(1967)や井上ほか(2001)などがある。ま た顕微鏡スケールの微細構造についても注目 されており, 微細構造記載のための薄片作成 方法が提案されている[土木研究所(2012)]。

本論では粘土層中の複合面構造やせん断センスを示す構造に着目し、脇坂ほか(2012)の破砕度区分における、ランク【CI】(図-1赤枠)について詳細区分・記載を行い、すべり面の認定精度を向上させる手法について述べる。

図-1 地すべり移動体及び断層岩類の 破砕度区分(脇坂他,2012)

2.すべり面認定手法

(1)コアに見られるすべり面の特徴の観察 コア観察では,図-2の ~ に示すような特 徴をもつ不連続面がすべり面の候補として挙 げられる。

図-2 コアに見られるすべり面模式図

では,すべり面の傾斜は比較的低角度で あり,高角度の粘土層は候補から除外できる。 ただし地すべり頭部は急傾斜の開口亀裂が分 布する可能性があるため、注意が必要である。

では,条線方向が地すべり移動方向と一 致するかを判定することが重要である。すべ り主測線上で条線の方向(レイク)が、面の 最大傾斜方向から大きく異なる場合は,破砕 帯と考えられ,すべり面候補から除外する。

については,上記の特徴をもつ不連続面 が,表層部から続く劣化領域の下限に位置し, それ以深では健全な岩盤となっている場合, すべり面である可能性は高いと考えられる。

について,の移動センスの判定指標としては,図-2の ~ などがある。この場合, コアを条線方向(運動方向)に平行に半割し, 観察することで判定を容易にできる(図-3) が、コアを乱さないよう半割にする作業には、 細心の注意が必要である。

図-3 すべり面粘土の微細剪断構造の事例

(2) ボアホールスキャナによる孔内観察

すべり面の候補として挙げられた不連続面 の走向・傾斜を把握し,地すべり斜面と粘土 層の傾斜方向の一致,不一致を確認できれば, コアに見られる不連続面が(1)で述べたよう なすべり面の特徴をもっていた場合でもすべ り面候補から除外することができる。このよ うにボアホールスキャナによる孔内観察がす べり面の絞り込みに有効である。

(3)すべり面を認定するための指標と手法 上述した手法より,すべり面を認定する際 にチェックすべき項目と有効な手法について

述べる。

基本的にはコア観察を詳細に行うことが最 も重要であるが、項目によってボアホールス キャナから得られる走向傾斜が有効な手段と なる(表-2)。地すべり斜面の傾斜方向に対し て流れ盤であればすべり面の可能性が高くな り、受け盤であれば候補からは除外できる。 層理面の走向傾斜が露頭観察等で明らかにな っている場合は、コアでの層理面と不連続面 の斜交関係から、粘土層の傾斜方向が推定で きる場合もあるが、多くの場合、困難であり ボアホールスキャナの活用が有効である。

ただし,すべりを示す条線や微細構造のない粘性土層であっても,地すべり斜面の傾斜

方向に対して流れ盤であれば,今後,すべり面 として活動する可能性があることや,これら の指標を満たした場合でも,地すべり斜面の 傾斜方向に対して流れ盤で正断層センスの微 細構造をもつ断層破砕帯の可能性がゼロでは ないことなどに注意する必要がある。

表-1 すべり面を認定するための指標と手法

すべり面を 判定するために有効な手法	
小 9 5日 1示	
(単積構造との斜交関係よ 流れ盤) (1)定できる場合もある	IJ
面上の 靖肌・条線 コア不連続面上の観察	
すべり方向が上盤 コア観察 の傾斜方向への移 ・条線の粗滑方向 動を示す。 断面観察	
開口状況 ボアホールスキャナ画像	
風化状況 コア観察	

《引用・参考文献》

- 1)(社)地すべり学会東北支部(2001):地す べり安定解析用強度決定法 -実務におけ る新たな展開をめざして- pp.1~79
- 2)藤原(1976):訂版 地すべり調査と解析 pp.1~107
- 3) 渡・小橋(1987): 地すべり・斜面崩壊の 予知と対策 pp.41-46.
- 4)中村・白石(1977):すべり面の形成と地 すべり発生条件に関する一考察 土木技術 資料,vol.19,no.5、p.23-28
- 5)国土技術研究センター(2010): 改訂新版貯 水池周辺の地すべり調査と対策 pp.1~277
- 6) 脇坂・上妻・綿谷・豊口(2012): 地すべり 移動体を特徴づける破砕岩 四万十帯の地 すべりを例として 応用地質, Vol. 52, No.6, pp. 231-247
- 7)Skempton, A. W.(1967): The strength along Structural Discontinuities in Stiff Clays, Proc.Geotechnical Conf., Oslo, Vol.2, pp.29~46
- 8) 井上・山田・田中・北川(2001): 岡山県 の三畳紀層に発達する野田地すべり地のす べり面の起源について 応用地質, Vol. 42, No.2 pp. 88-100
- 9) 土木研究所資料 第4227号(2012): 樹脂固 定法によるすべり面標本の作製マニュアル (案)pp.1-18

定方位・高品質コアリング手法

村田 誠一(㈱高知地質調査)・高野 邦夫・大内学(㈱ダイヤコンサルタント)

1.はじめに

地質調査ボーリングは,地質の性状や不連 続面の傾斜等の地質情報の取得を主目的とし て行われることから,コアの撹乱が少ないほ どより正確な地質状況を把握することが可能 となる。このため,高品質コアのサンプリン グ技術は近年著しく進歩している。一方で, 現状のボーリング技術ではコア自体の方位が 不明であることから、層理、断層等の地質不 連続面の走向,傾斜を把握する必要がある場 合には、一般にボアホールスキャナーを併用 している。しかし,掘進中にケーシングを挿 入しなければならない場合や細粒分による孔 内水の濁りを容易に除去できない断層破砕部 等の脆弱な地質区間ではボアホールスキャナ -を適用することができないために,正確な 地質情報を得ることができないという課題が あった。

ここに紹介する「FIAXコアリング工法」 は、ボーリングコアを定方位で高品質な状態 で採取することにより、ボーリングコア自体 から様々な地質不連続面の方位を測定可能と した掘削工法である。本工法は、実証試験を 約10箇所で行い、実際に定方位コアをサン プリングするとともにボアホールスキャナー による検証を行い、実用化に至っている。

2. 高品質・定方位コアリング

一般に高品質なコアを採取する目的でダブ ルコアバーレルが用いられているが,コアを 収納する内管がベアリングによる自在回転構 造となっているため,硬軟の急変箇所等で回 転切削する外管と内管が供回りを生じること があり、コアが回転して変形する等のトラブ ルがしばしば発生している。また,これまで の技術においては、掘進時にコアバーレル内 管の供回りを防止し、コアを定方位でサンプ リングする方法として、 内管の回転履歴と 捩じれを検出する方法, サンプリング直前 に方位マーキングあるいは方位検出を行う方 法等の様々な手法が考案されているが、いず れの手法も数 10m クラスの岩盤の連続コア リングでは実用化に至っていないのが現状で あった。

株式会社高知地質調査は、内管を一定方位

に制止させることにより乱れのない定方位コ アを採取する手法としてFIAXコアリング 工法」を開発した。本工法は独自に考案した 「二重管式固定軸ロッド」及び「固定軸ダブ ルコアバーレル」によって内管を定方位に固 定してサンプリングを行うため,定方位のコ アを採取できるだけではなく,供回りによる コアの品質低下も防止できるため,断層粘土 や地すべりのすべり面粘土等の脆弱部を不撹 乱状態でサンプリングすることを可能とした ものである。

3.FIAXコアリング工法(特許第4609783) 本工法は,汎用ボ・リングマシンを使用し, 二重管式固定軸ロッド及び固定軸ダブルコア バーレルにより定方位コアのサンプリングを 行うものである(図-1)。

以下にFIAX工法の特徴について述べる。

【定方位サンプリングの原理】

二重管ロッドの内管(B-3)を地上で自在な方 位に固定(C)するとともにコアバーレル内管 (A-6)と連結,一体化する。

二重管ロッド外管(B-2)及びコアバーレルの 外管(A-4)を回転させてもコアバーレル内管が 定方位に固定された状態に保たれているため, 定方位のサンプリングが可能である。

図-1 FIAX コアリング工法概要図

(1) 二重管式固定軸ロッド

二重管式ロッドの供回り力による内管の捩 れを抑制するため大口径で高強度の固定軸部 材を選定し、複数連結されている固定軸が同 一芯となるよう精密加工を施した。孔長100 mで5°以内の方位誤差を目標として開発し た装置である(図-2)。

【固定軸の構造】

固定軸の上下端をピン・ボックスとしており、 外管のねじ連結と同時に固定軸も連結される。

図-2 二重管式固定軸ロッド概要図

(2) 固定軸ダブルコアバーレル

コアを採取・収納するダブルコアバーレル の内管を二重管式固定軸ロッドの内管と連結 し,コアバーレル外管が回転した状態でも内 管は固定された状態を保つ構造とした。

(3) 定方位コア採取の原理

任意の方向に固定された二重管ロッド内管 とダブルコアバーレル内管が連結(同軸一体 化)されているため,掘進中にロッド外管及 びコアバーレル外管を回転させても,ロッド 内管及びコアバーレル内管は回転しない構造 であるため,コアを回転させることなくサン プリングすることを可能とした。さらに,ロ ッド内管を地上で任意の方位(北)に固定し, コアバーレル内管中の収納ビニールチューブ の青線を地上で固定した任意の方向(北)に 合わせることにより,任意の方向(北)のコ アを採取できるものである(図-3)。

(4)課題現装置はボ・リング孔径 86mmに限定さ

れている。小孔径とする場合には装置部材の 強度低下が問題となり、大孔径とする場合や 適用深度をさらに深くする場合には装置部材 の大型化,高強度化が課題となる。

現在、孔径 116mmに対応できる装置を開 発中であり,今後も多様な孔径を開発する予 定である。

泥質片岩及び破砕部

風化花崗岩及びひん岩 収納ビニールチューブの青線が北を示す 図-3 定方位・高品質コアの事例写真

4.まとめ

FIAXコアリング工法により得られた高 品質・定方位コアは,極めて乱れが少ないた め地質状況を詳細に把握できると共に,従来 の汎用ボーリングでは実現が困難であった以 下のような利用法が考えられる。

層理面,地質境界,断層,節理,片理, 変質脈等の地質不連続面の走向・傾斜, 条線の方向等をコアから直接に測定可能 コアが不撹乱状態であるため,三軸圧縮 試験等の力学試験試料として使用可能 コアの方位が明確であるため古地磁気測 定試料として使用可能

亀裂の開口幅を問題とする地点にはボアホ ールスキャナーが優れるが,ボアホールが適 用困難な硬軟繰り返す断層破砕部や地すべり のすべり面等の脆弱な区間の不連続面の方向 を把握するためにはFIAXコアリング工法 は非常に有効であり,地質調査の高精度化, コスト縮減に大きく寄与すると考えられる。

【参考文献】

(社)全国地質調査業協会連合会(2003)ボー リングポケットブック第4版 オーム社

2011 年 4 月 11 日福島県浜通りの地震(M7.0)で生じた 塩ノ平断層の断層露頭観察結果と考察

東北開発コンサルタント 橋本 修一

1.はじめに

2011 年 4 月 11 日発生の福島県浜通りの地 震(M7.0)で出現した地表地震断層「塩ノ平断 層」沿いに,時代未詳礫岩層の分布が確認さ れた. 断層露頭の観察結果を紹介する.

また,詳細立体地形斜度図の判読と現地踏 査を相互補完することで,より精度のよい地 質構造・地質分布の推定に役立てられる可能 性を示す.

2.塩ノ平断層の概要

4月11日発生の福島県浜通りの地震発生後, 震源域のいわき市遠野町綱木から同田人町旅 人にかけての10数kmの区間で,西側低下の 高角度正断層型の地表地震断層が確認された.

本断層は,活断層として知られた2条の井 戸沢断層(中田・今泉編,2002)のうち西側のト レースにほぼ沿って出現したもので,すでに 記載されていた井戸沢断層(竹貫図幅,1973) とは別個のものとして,塩ノ平断層(石山他, 2011)と仮称された.

なお,井戸沢断層沿いに今回の地震による 新たな変位は確認されていない.

3.断層露頭付近の地質分布

今回紹介する断層露頭は塩ノ平集落の南東約250mの東流する沢の右岸側に位置する.周辺一帯は,塩基性岩あるいは泥質・砂質岩を源岩とする片岩からなる御斎所変成岩類が広く分布する(図-1).また,花崗質深成岩類として宮本,田人,鮫川の各複合岩体がそれぞれ露頭の北方,南方,西方に分布する.これら基盤岩類を不整合に覆って新第三系中新統・五安層(砂礫質岩と泥質岩からなる)が不規則に分布する(竹貫図幅,1973など).

4.断層露頭の観察結果

沢から南方には,NNW-SSE 走向,西高角度 傾斜・西側 2m 落下の断層露頭が連続している. 断層面には,周囲の変成岩類とは明らかに異 なる新期の礫岩層が張り付くように分布し, 表面に明瞭な条線が確認された.礫岩層の基 質は淘汰の悪い泥質砂岩で,まれに花崗質深

図 - 1 塩ノ平断層周辺の既存地質図

成岩類の複合岩体起源と思われる花崗岩類~ 斑レイ岩の円礫を含む.岩相は五安層基底部 に類似するが対比は不明である.なお,同様 の礫岩層は東大・塩ノ平トレンチ内及びその 近傍でも確認されている(石山他,2012).

2月,断層面から礫岩層が厚さ数 cm 剥落し, 径 10 cm の角閃石斑レイ岩の扁平な円礫が埋 め込まれるように配置しているのを確認した. 同円礫の周囲にはガウジが高密度に形成され, 礫の移動による擦痕も複数方向認められる (図 2).

当該礫以外の円礫(pebble~cobble)の扁平 面も,当該礫と同様に断層面に平行している ことから,礫を含む周囲の礫岩層全体が,礫 の回転・再配列を含む複数回にわたる断層活 動の影響を受けているものと推定される.

変成岩類からなる山地にあって,やや傾斜度 の緩い凹地状の地形にこれら堆積層が分散し て小さく分布するようである.また,上記の 地形的特徴を有する箇所は,井戸沢断層,塩 ノ平断層及び既存地質図には記されていない 同方向の断層が示唆されるリニアメントを境 に西側に広く分布する傾向にある.

いずれの分布も凹地の東縁を直線的に画されることから断層の存在及び堆積層堆積以降 にも累積的な活動があったことを示唆するものである.

6.おわりに

礫岩層の年代特定など課題が多いが,塩ノ 平断層沿いに分布する同礫岩層の変形につい て一定の知見を得ることができた.

高精度の立体地形斜度図は,詳細な地質調 査における地表踏査の相互補完という意味で の活用も期待される.

文献

- 中田高・今泉俊文編 (2002),活断層詳細デジタ ルマップ,東京大学出版会
- 2) 石山達也・佐藤比呂志・伊藤谷生・杉戸信彦・ 越後智雄・加藤直子・今泉俊文(2011)2011年4 月11日の福島県浜通りの地震に伴う地表地震 断層について(第2報) http://outreach.eri.u-tokyo.ac.jp/eqvolc/2 01103_tohoku/fukushimahamadoori/
- 加納博・黒田吉益・宇留野勝敏・濡木輝一・蟹 沢聰史・丸山孝彦・梅村隼夫・光川寛・瀬戸延 男・大平芳久・佐藤茂・一色直記(1973)竹貫地 域の地質,地域地質研究報告(5万分の1地質図 幅),地質調査所
- (1949)7万5千分の1地質
 (1949)7万5千分の1地質
 (1949)7万5千分の1地質
- 5) 石山達也・杉戸信彦・越後智雄・佐藤比呂志 (2012)2011 年4月11日の福島県浜通りの地 震に伴う地表地震断層のトレンチ掘削調査(速 報)公益社団法人日本地震学会ニュースレター, vo.23, no.5, p.36-39.
- 6) 黒澤英樹・楮原京子・三輪敦志・佐藤ふみ・今 泉俊文・宮内崇裕・橋本修一・中島秀敏・白澤 道生・内田淳一(2012):2011 年 4 月 11 日福島 県浜通りの地震に伴う地表地震断層 いわき市 田人町塩ノ平における露頭観察とボーリング調 査(速報) ,活断層研究,36 号,pp.23-30.

5.詳細立体地形斜度図の活用と礫岩層の分 布範囲の推定

10mDEM を用いた立体地形図の活用例とし て,大局的な地質分布の違いが山地斜面の傾 斜度の違いによく反映される例が知られてい る.当該地域において,より精度を向上させ た 2mDEM に基づく塩ノ平断層沿いの傾斜度 図により,2011 年 4 月 11 日に生じた地震断 層の詳細なトレースと微地形が極めて精確に 表現された(黒澤他,2012).

今回,2mDEMの立体地形図と照し合せて現 地調査を行なった結果,上述した礫岩層は,

国道 45 号 石巻市成田地区 3.11 震災による斜面崩壊機構と対策工

株式会社 復建技術コンサルタント 小林俊樹・大友伸一・天谷香織

はじめに

斜面崩壊は、国道 45 号石巻市成田地区にお いて発生した。崩壊箇所は、北上川左岸の攻 撃斜面に当たり、地質は三畳紀 伊里前層 砂 岩・粘板岩互層からなり、構造は N20W40E と斜 面では受け盤構造をなしている。崩壊発生は、 3.12 の深夜であり、3.11 地震とは約 34 時間 のタイムラグがある。崩壊規模は当初 幅 100m、高さ 60m 程度であったが、次第に拡大 し、5 日後には高さ 90m 程度までに及んでい る。

本論では、崩壊状況、崩壊機構ならびに対 策工選定について報告する。

- 1 崩壊発生状況
- 「崩壊経緯」
 - H23.3.11(金)14:46 東北地方太平洋 沖地震(M9.0)発生。石巻市相野谷震度 6弱。
 - H23.3.12(土)深夜 R45 67.1kp付近 で斜面崩壊発生(土砂は道路を塞いでい ない)。
 - ・ H23.3.13(日)0:30 頃 崩壊発生(地 震発生約34時間後)このタイムラグの 間に顕著な降雨はない。震度4程度の余 震は1回発生。
 - ・H23.4.23(土)日雨量 31mm の降雨。崩壊 が幅 100m×高さ 60m から幅 100m×高さ 90mまで拡大。

2 崩壊機構

当該斜面の地質は砂岩・粘板岩の互層から なる。ボーリング調査などの結果から、表層 は風化が進行し、緩んだ状態にあることが確 認された。こうした岩盤の緩みは、北上川の 攻撃斜面に位置してことも影響していると考 えている。

崩壊機構は、土砂化した緩み岩盤が地震動 を誘引として、斜面末端で発生した崩壊が背 後へ波及した後方後退型の崩壊と判断した。

3 対策工の選定

対策工は、以下の点を考慮して、決定した。 滑落崖上部斜面の安定をまず図り、後方 後退を阻止する。

崩壊末端の土砂撤去は、崩壊が拡大する ので実施しない。土砂撤去は斜面上部か ら行い、順次切り下げる。

施工の安全確保のため、頭部排土は無人 掘削機械を使用。

斜面上の崩積土砂は非常に不安定で、す べて除去。

掘削施工時は、動態観測を実施し、施工 時の安全確保を図る。

施工と並行して法面スケッチやボーリ ング調査を行い、対策工の妥当性を順次

検証しながら、必要に応じて修正設計を行 う。 道路の供用に際しては、警報装置付きの 動態観測システムを稼動させる。 対策工:切土 + 抑止工

- ・上部斜面:1:0.6 で切土整形、グラウンド アンカーエ(@3.0m,6段)+軽量受圧板、モル タル吹付工(t=10cm)
- ・下部斜面:最下段および終点側3段目まで は1:0.8で切土整形し、それ以外は1:1.0 で切土整形(計画安全率Fsa=1.20を確保)。 安定勾配(1:1.2)不足分はロックボルト 工により表層地山の補強を行う。切土面は 風化浸食防止を目的として、全面に植生基 材吹付工(t=6cm)を施す。

(以上)

北上山地の花崗岩地盤は本当に安定か?

東北大学理学研究科地学専攻 遅沢壮一

花崗岩の褶曲についての元論文は、Soichi Osozawa, Chin-Ho Tsai, John Wakabayashi, 2012, Folding of granite and Cretaceous exhumation associated with regional-scale flexural slip folding and ridge subduction, Kitakami zone, northeast Japan. Journal of Asian Earth Sciences,

http://dx.doi.org/10.1016/j.jseaes.2012. 05.023 である。なお、朝日新聞による大船 渡の津波写真も使用したせいか、17MBと重く、 メイル添付できない。要旨と図は下記です。 http://www.sciencedirect.com/science/art icle/pii/S1367912012002398

南北北上山地とも花崗岩はスレート劈開の 形成とほぼ同時に貫入しているが、基本的に 非変形とされていることが多い。そうである ならば、花崗岩地盤は安定であるとするのも 一理ある。これらは大島造山運動の1表現で あるが、しかし、北上山地の構造は必ずしも 明確でなかった。

北上巡検の際、大船渡の長部海岸で、気仙 川花崗岩が褶曲しているのを発見した。これ は、ほぼ正立であるが、北東フェルゲンツの 非対称褶曲の一部である。ステレオ解析でも、 これが構造的褶曲であることを示している。 褶曲は軸面フォリエーションを伴っていて、 鏡下では、黒雲母の定向配列がそれを定義し ている。圧力条件は、どの花崗岩体でも 5km 程度であるが、温度は岩体に近づく程、高く なる。泥岩には、黒雲母を含む特徴的な変成 鉱物が、このように生じているが、これらも 基本的に南北性のフォリエーションを成して いる。片状花崗岩は必ずしも稀ではなく、少 なくともそのような花崗岩は構造的に強く変 形していることになる。

北部北上山地では褶曲は倒れているが、南 北北上山地とも、一次背斜の軸に向かう二次 の非対称褶曲を伴うフレキシュラルスリップ 褶曲が基本的な大構造で、強いスレート劈開 を軸面劈開として伴っている。特に逆転翼に は、脆性断層を伴っていることが多く、これ らは弱線として作用する。

宮古層群は傾斜した不整合で、変形した花 崗岩を含む基盤岩を覆い、これが大島造山運 動を表している。従って、それ以降は、変形 していると言っても、安定しているとして良い。

しかし、直後に、左横ずれのトランスフォ ーム断層が生じていて、これらは特に阿武隈 山地では現在まで再動して、一部は活断層と なっている。北上山地の断層も、これらは花 崗岩も切るが、当然、再動するはずである。

一方、鵜の巣断崖など、三陸海岸には最大 標高200mに及ぶ、明瞭な海岸段丘が見られる。 そのような隆起は大地震に伴ってなされたと 考えざるを得ない。ところが、今回の地震で は、三陸沿岸は沈降し、沈降は上記の考えと 矛盾する。筆者は間もなくリバウンドして、 隆起転じると考えたが、その兆しは無い。そ こで、次のように考えた。海溝より内陸側で 起きる別のタイプの巨大地震がある。結果的 により短時間で津波が到達する未知の巨大地 震こそが三陸海岸を隆起させ高位段丘を生じ た。後出しじゃんけんするよりも、あり得る ことを主張することは、有益と考えて、この ような仮説を述べさせて頂いた。

いずれにせよ、断層や劈開に沿っての再動 の可能性がほとんどないとしても、花崗岩を 含む北上山地が、今回の地震のように、強震 動に見舞われるのは疑いなく、北上山地の花 崗岩地盤の強度は、大型精密機器の設置に、 十分と言い張るのは暴論であると言わざるを 得ない。

地震で発生した人工地盤の変状

(盛土崩壊の事例紹介)

1.東日本大震災で発生した盛土崩壊の概要

東日本大震災の発生に伴い人工地盤である 盛土(駐車場として使用)を中心に変状が発生 した。変状が発生した盛土は沢部を埋め立て て造成され、施工後10年以上が経過していた。 変状は谷埋め盛土全体で発生し、幅80m、奥 行き25mに及んでいた。路面の沈下や亀裂の 発生、埋設物や付帯施設が変形するなどの被 害が発生した。盛土法肩部では崩壊が発生し、 崩壊に伴い発生した土砂が多量の水とともに 流出し、道路を閉塞する被害が発生した。さ らに時間の経過とともに盛土細粒分が流出し、 変状範囲が拡大するなどの被害が発生した。

図-1 被害発生状況図

写真-1 路面沈下状況 写真-2 表層崩壊

写真-3 構造物の変状 写真-4 亀裂発生状況

基礎地盤コンサルタンツ株式会社 西 俊憲

2.地形地質の概要

今回被害が発生した盛土は標高 200m 前後 の緩やかな丘陵地の一部を造成して作られて いる。丘陵地は新第三系中新統の白石層に属 する凝灰角礫岩と軽石凝灰岩で構成されてい る。人工地盤は旧沢筋を造成に伴い発した現 地発生土(白石層を掘削して発生した礫混じ り砂質土)で埋め戻した盛土で構成されてい る。盛土と地山の境界付近には湧水が見られ、 現在も旧谷地形に沿って地下水が供給されて いることが伺えた。(図-2参照)

図-2 地質平面図および断面図

3.崩壊機構

3.1 崩壊の素因

(1)地下水で飽和された盛土

盛土の層厚は8mであり、造成時に発生した 礫混じり砂質土が盛土材として使用されてい た。盛土内で簡易動的コ-ン貫入試験を実施し た結果、深度2.0m付近を中心に強度低下する 傾向が見られた。(図-3参照)盛土は沢部を埋 め立て造成されているため、長期間にわたり 地下水が供給されて飽和状態にあったと推定 される。このため地震発生に伴い細粒分主体 の盛土材で構成され、地下水が飽和状態にあ

った深度 2m 付近の強度が短期間に低下した と推定する。工事に伴い盛土を 3m 掘削した結 果、深度 2.5m~3.0m 付近で地下水が分布し、 広い範囲で強度低下が確認されている。

図-3 簡易動的コーン貫入試験結果

3.2 崩壊の誘因

地震発生に伴い大きな外力が発生し、谷埋 め盛土の一部で崩壊が発生した。崩壊に伴う 土砂流出により、地震に伴う強度低下が発生 した範囲を中心に盛土の変形が拡大したと推 定される。さらに地震時に盛土内設置された 水道管が破裂し、盛土内に水道水が供給され たことにより崩壊とともに盛土材が流出し、 空洞や沈下が発生し、被害を拡大させたと推 定する。

4.提案した対策工(図-5参照)

4.1 盛土の再施工

地震に伴い変形し、緩んだ範囲の盛土を撤 去し、再度盛土を施工することを計画した。 深度方向については地震前後で強度が低下 (緩んだ)した範囲まで撤去・再盛土を計画 した。強度低下の範囲は地震前後で実施した 標準貫入試験結果より決定した。(図-4参照) 4.2 地下水対策

谷埋め盛土であるため、周囲から地下水が 集まりやすい。また、地下水の影響で盛土材 の強度が低下することも確認されているため、 盛土内に地下水排除工を計画した。地下水対 策としては浅層部(地表 2~3m 程度)の地下水 を対象に盛土内に暗渠工を施工し、地下水を 排除する計画とした。

2012 年 7 月現在復旧工事を実施している。 年度内に工事は完了する予定である。

宮城県大河原土木事務所より資料を提供し て頂いた。記して謝意を表します。

000 × 000 × 000

70.00 75.00 80.00

'n,

- 26 -

75.00

70.00

65.00

60.00

55.00

50.00 45.00

40.00

ŝ ġ

空洞充填前後におけるAEモニタリングシステムの構築

1.はじめに

地盤に突然大きな穴が開く、いわゆる「陥没」 問題は、国内外を問わず多く発生している。 素因は廃坑を始めとした何らかの理由による 「空洞」の存在と、誘因は様々考えられるが 地震動もその一つである。平成23年3月11 日の東日本大震災と一連の余震によって、宮 城県から茨城県にかけて 300 余の陥没が発生 した。一部を調査したが、田んぼなどでは噴 砂も伴う場合があり、一見液状化と見誤るよ うなケースも見られた。これらはかつての石 炭や亜炭採掘跡の廃坑周辺に多く発生し、注 目すべきは、これらの多くは繰り返し陥没し ている点である。幸い人的被害は無かったよ うで社会的関心は薄いが、災害の一つとして 日頃より十分な配慮がなされるべきであろう。 これらの対策としては「充填工法」が有効と 考えられるが、その効果を何らかの方法で確 認することが望ましい。本文ではAEによる 方法を試みている。

2.充填による陥没対策工

土砂投棄などの単なる埋め戻しではなく、人 家、道路近傍や学校などの公共施設周辺など では根本的な対策が必要であろう。そのため には空洞を「埋め戻す」方法が最善である。 しかし、その土量、すなわち経費は膨らみ地 上をすでに利用している場合は事実上この方 法は困難である。そこで、例えばスラリーを 圧入する「充填」が実施されている。空洞に 単に充填するのでは不経済となるので、対象 地域を絞りその周辺に、まず充填材による 「壁」を作り、その中を充填する限定充填方 式が採用されている。一方、既存の空洞を充 填するのであるから、それ以前に比べて周辺 の地盤はより安定化するはずであるがこれを 確認する方法が確立されているとは云えない。 そこで本研究ではAEの利用を試みている。 3.AEによる充填空洞モニタリングの事例¹⁾ 用いたAEシステムの基本はAE・AD法²)であ る。これは、AE波をパルスに置き換えカウ ントするという簡易的なものである。事例は、 具志川城趾(沖縄県糸満市)の基盤下の空洞 対策工(図1)である。岩盤にはA,Bの二

日本大学工学部	研究員	田野久貴
東海大学海洋学部	ß	藍檀オメル
琉球大学工学部	3	度嘉敷直彦

図1 具志川城趾の二つの空洞(A,B)¹⁾

図2海蝕空洞天端に設置した密閉型 AE 装置

図5 夜間のみのAEイベント(B空洞)¹⁾

つの大きな海蝕空洞が海側に開口し、部分的 にかぶりの浅いところは2~3m程度であっ た。この城趾は史跡として整備の予定があり 陥没等が懸念された。そこで開口部をふさぐ 形で海側に人工岩壁を構築し充填が実施され た。この空洞は大きく内部に立ち入ることが 可能であったため、ステンレス製のケース内 に、センサー・アンプを密閉しA,B両空洞 の天端に取り付けた(図2)。DC電源と信号 ケーブルはボーリング孔を通して地上に引き 出され、ロガーに接続される。計測結果を図 3~5に示す。充填の前からAEの計測がお こなわれたが、人工岩壁施工に伴う工事によ る多くのノイズの発生が認められる(図3)。 そこで、主として夜間のAE発生状況に注目 し整理した。その結果を図4と5に示す。充 填後はAEの発生が減少していることが観察 される。なお、本システムのAE発生状況は、 施工中の崩落懸念の管理にも利用された。亀

裂計、傾斜計などの計測器も併せて計測され た。

4 . 今後の展望(孔内AEモニタリング システムの開発)

前述の報告¹⁾は空洞内に立ち入れる事例であったが、廃坑規模が小さくまた部分閉塞などによって空洞内に立ち入れない場合がほとんどである。さらに廃坑のような空洞は無数に存在し、必ずしも存在が明らかになっているとは云えないようである。したがって、これらすべてに充填などの対策を施工することは実質困難である。次善の策はとして、例えば1)空洞周辺にボーリングする、2)ボーリング孔を利用してAEを計測する(孔内AE 装置)という方法が一つの選択肢と考えられる。多く実施した場合は発生状況によっては施工の優先順位のデータともなる。

ボーリング孔内から空洞底部にウエーブガ イドとしての鋼棒を立ち上げ、その後端(地 上)にAEセンサーを設置する方法もすでに 実施されて一定の成果が報告³⁾されている。 この方法では充填の際もAE計測システムは 外乱を受けにくく、AE装置は回収可能とい う利点もある。一方、空洞周辺ではその頂部 (天端)付近で最もAEの発生が期待される。 そこで、その天端付近のボーリング孔壁にA Eセンサーを固定し、また、その位置を自在 変えられる事が望ましい。そこで、図6に示 すような孔内AEモニタリング装置を開発中 である。同図には、AEアンプは省略してあ る。重錘を引き上げることでAEセンサーは 孔壁から離脱し、移動させることが可能であ るから、深度を変えまた、ボーリング孔も変 えることが出来る。空洞のモニタリングだけ でなく充填の効果を確認するには、充填後も 装置を固定して計測を継続すればよい。この 方式では、より敏感に充填前後のAE挙動の 差異の観察が期待されるが、装置は埋め殺し となるため、極力経済的に構築する必要があ る。また、充填の妨げとならないようにする ためには装置の小型化が要求される。図6と は異なる形式の開発が必要であろう。

前述したように設置回収が自在であれば、 充填の必要性の有無(空洞の安定・不安定の 判断材料)という点から事前調査にも利用す ることが考えられ、これが開発の主目的であ る。充填後にも使用するということはその応 用と位置づけられる。まとめは以下である。

- 1) 充填前後のAE計測事例では、充填 前より充填後はAEカウントがやや 減少した。
- 2) 充填の前後で明瞭なAEカウントの 差異を得るには、空洞天端近傍への センサー配置が望まれる。
- 3) 上記の目的のためには、移動可能で 小型かつ経済的な孔内AE装置が望 まれ、現在開発中である。

図 6 ボーリング孔内用パンタ方式のAE 装置概念図

参考文献

1)名古屋産業科学研究所:具志川城趾周辺岩 盤の充填前後における岩盤挙動のモニタリン グ成果報告書、2011 年 11 月、36p.

 2)田野久貴:AE(アコースティック・エ ミッション)と地盤工学への適用、技術手帳、 pp.65-66、地盤工学会誌、58,2010,3月.
 3)日進竹の山南部地区地盤安定度評価委員会:技術資日進竹の山南部地区地盤安定度評価委員会:技術資料 N0.1,14P.

一般社団法人日本応用地質学会 東北支部 第 20 回研究発表会講演集

平成 24 年 7 月 20 日発行

編 集 一般社団法人日本応用地質学会東北支部事務局

応用地質株式会社 東北支社 内

仙台市宮城野区萩野町 3-21-2 TEL:022-237-0471 学会 E メール:jseg_tohoku@yahoo.co.jp ホームページ:http://www.jseg.or.jp/tohoku/